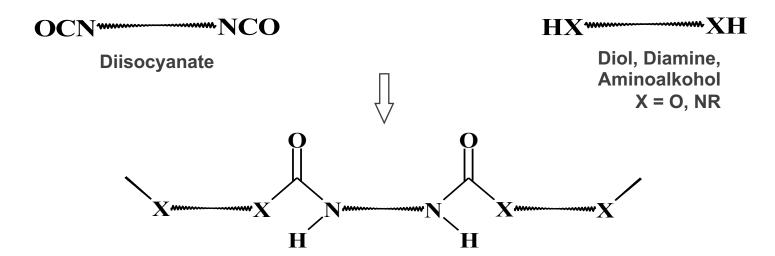
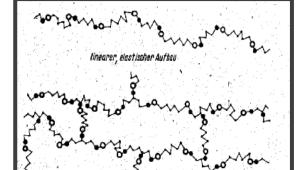


Polyisocyanates for modern 2K-PU Coatings Systems

"Ramspec " – Coatings & Composites

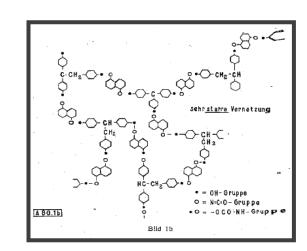
Dr. Ulrich Freudenberg, October, 04th, 2018




Agenda

- Welcome & introduction
- Diisocyanates Basis of PU-chemistry
- Polyisocyanates Standard crosslinkers
- New trends of development:
- low viscous crosslinkers
- high functional / high elastic crosslinkers
- low residual monomer content
- Sustainability
- Hydrophilized Polyisocyanates

Formation of Polyurethanes



Blid 1a

Otto Bayer "Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane)"

Angewandte Chemie, 1947, 59, 257-288.

Polyurethane (X = O) Polyurea (X = NR)

A 80.1a

Aliphatic Diisocyanates

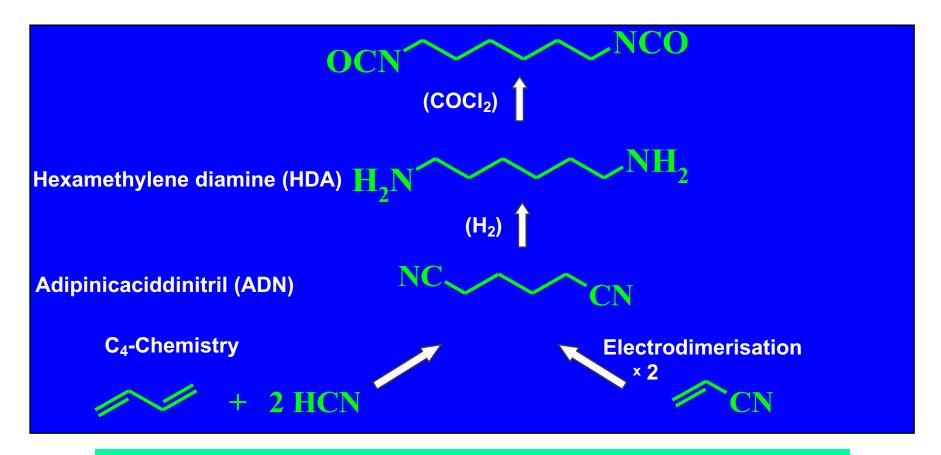
linear aliphatic

Hexamethylendiisocyanat (HDI),

cyclo-aliphatic

Isophorondiisocyanat (IPDI),

4,4'-Diisocyanatodicyclohexylmethan (H₁₂-MDI),


araliphatic

Xylylendiisocyanat (XDI)

Tetramethylxylylendiisocyanat (TMXDI)

HDI Synthesis

3 steps incl. handling of very toxic raw materials

Main pathways to Polyisocyanates

Aliphatic Polyisocyanates for 2K PUR Coatings (HDI-based)

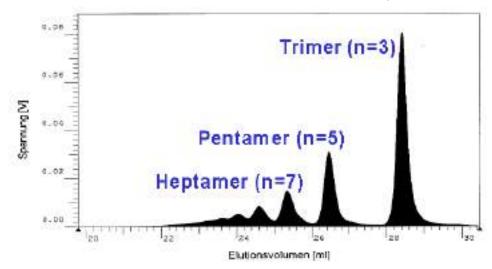
structure

Aliphatic Polyisocyanates for 2K PUR Coatings (HDI-based)

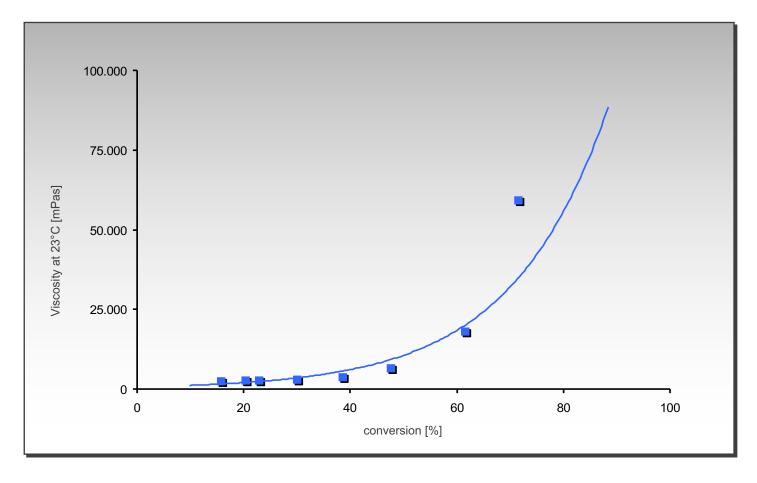
 \times 3, + catalyst OCN-(CH₂)₆-NCO OCN-(CH₂)₆-NCO

*Ideal HDI-Isocyanurate structure

HDI-Trimer


=> lower viscosity better monomer stability vs. technical HDI-Biurets

Aliphatic Polyisocyanates for 2K PUR Coatings


3 R-NCO
$$\xrightarrow{\text{[cat.]}}$$
 $\xrightarrow{\text{R}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{N}}$ \xrightarrow

n = number of monomeric units incorporated

Manufacturing of polyisocyanates

Aliphatic Polyisocyanates for 2K PUR Coatings

	Dillele	ant ongon	iei distribi	ution i	eaumg	ιο		
different viscosities and different drying times								
ner	Solid	Viscosity	NCO-	Dry	Oligon	ner Distri	butio	
Hei	Content	[mPas] 23°C	functionality	Time	n=3	n=5	n>	

Different eligement distribution leading to

HDI-Trimer	Solid	Viscosity	NCO-	Dry	Oligomer Distribution		
Tibi-Timer	Content [mPas] 23°C		functionality	Time	n=3	n=5	n>5
standard	100	3000	~ 3.5	+	~ 50%	<20%	<30%
low viscous	100	1200	~ 3.1	0	~ 70%	<20%	<15%

Low viscous Hardener for High Solids and waterborne Systems

Standard PU Hardeners Biuret Trimer LV-Trimer

Curing Speed

Decreasing viscosity

Trends of development:

- Lower viscosity
- Higher functionality / improved properties (p.ex. drying, elasticity)
- Low residual monomer content
- Sustainability
- Hardeners for waterborne 2k-PU-Systems

Low viscous crosslinkers

Low viscous Aliphatic Polyisocyanates

Alternative Catalysts lead to Isomeric Trimers:

Isocyanurate (Symmetric Trimer, ST)

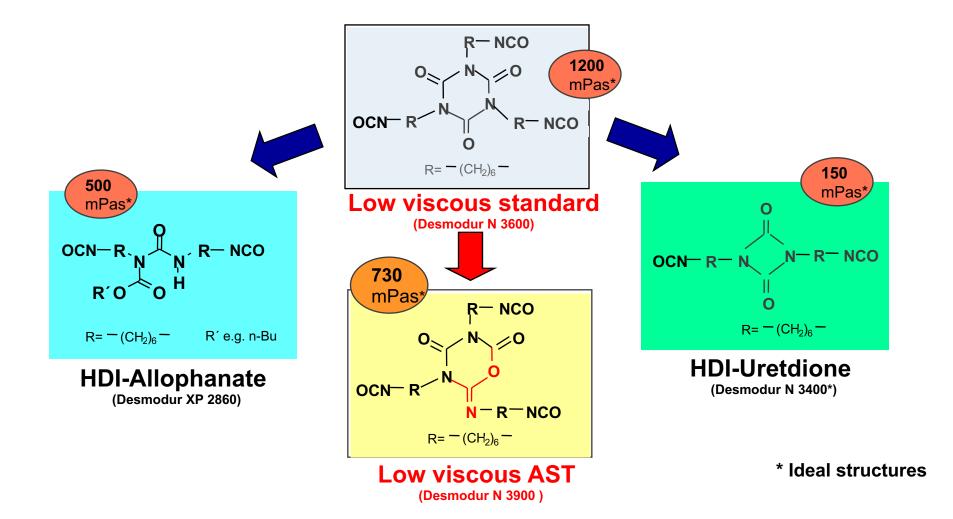
Iminooxadiazindione
(Asymmetric Trimer, AST)

Low viscous Aliphatic Polyisocyanates

Viscosity of the pure Trimers (100% n =3) (isolated by chromatography) (model compounds)

 $R = -(CH_2)_6NCO$

Symmetric Trimer (ST)


Asymmetric Trimer (AST)

~ 700 mPas

< 400 mPas

Aliphatic Polyisocyanates Structures of products with lower viscosity

Crosslinkers with high functionality and high elasticity

Aliphatic Polyisocyanates for 2K PUR Coatings

High viscous Hardener for Fast Drying

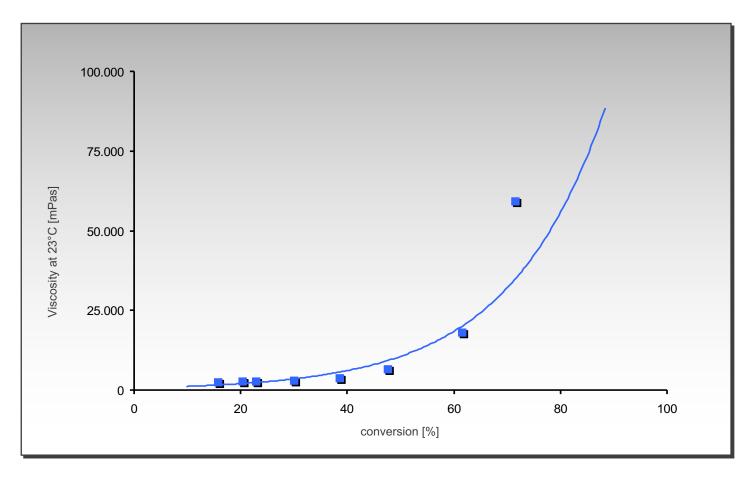
Different oligomer distribution leading to different viscosities and different drying times

HDI-Trimer	Solid	Viscosity	NCO-	Dry	Oligomer Distribution		
TIDI-TITILE	Content	[mPas] 23°C	functionality	Time	n=3	n=5	n>5
high viscous	100	15000	~ 4	++	~ 30%	<20%	~ 50%
standard	100	3000	~ 3.5	+	~ 50%	<20%	<30%
low viscous	100	1200	~ 3.1	0	~ 70%	<20%	<15%

Low viscous Hardener for High Solids and waterborne Systems

Aliphatic Polyisocyanats for 2K PUR Coatings

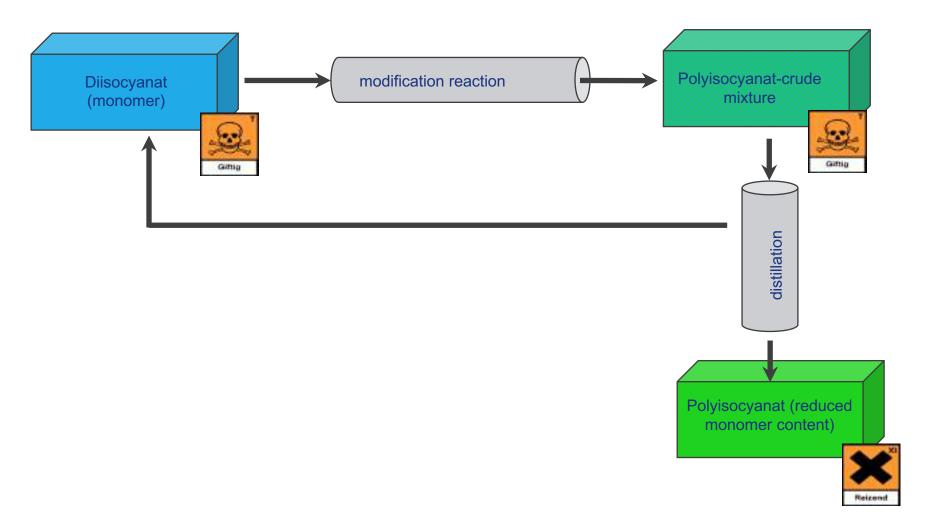
Pathways to extremely highfunctional crosslinkers:


3 R-NCO
$$\frac{1}{[cat.]}$$
 $\frac{1}{R}$ \frac

Low residual monomer content

Manufacturing of polyisocyanates

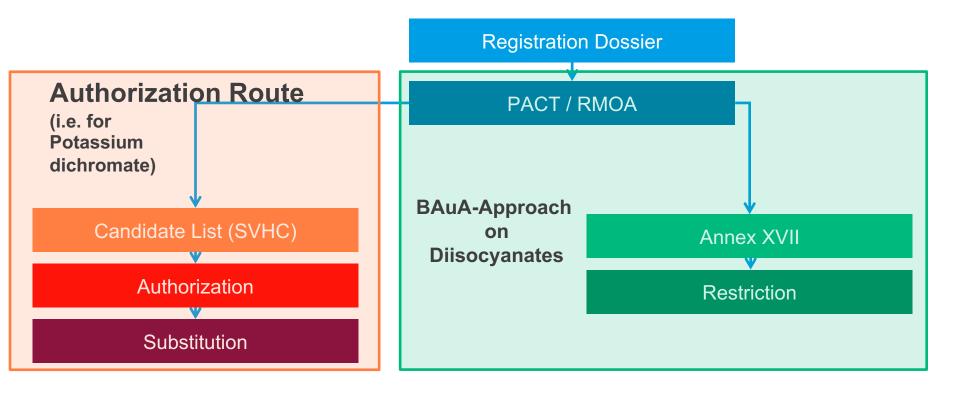
Manufacturing of polyisocyanates – tailoring properties


Increasing conversion / modification means.....

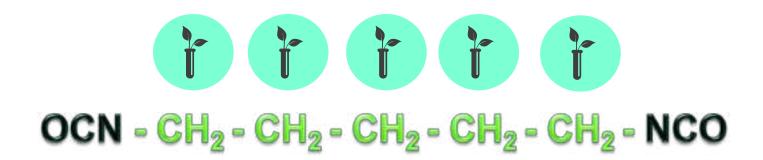
increasing content of higher oligomers increasing molecular weight increasing viscosity

increasing average NCO-functionality increasing crosslinking density decreasing content of NCO-groups

Scheme manufacturing procedure for polyisocyanates



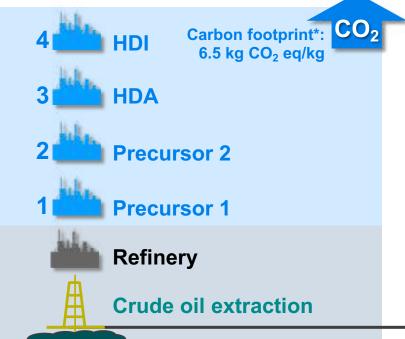
Diisocyanate Restriction is based on REACH


Driven by German Authorities and Supported by Industry Coalition

Sustainability

Pentamethylenediisocyanate (PDI) A new aliphatic isocyanate with high potential

- ➤ The first isocyanate with significant biocontent: **71% renewable carbon***
- > The corresponding derivatives are similar to established HDI based products
- ➤ The first product: Desmodur® eco N 7300 is a near drop-in to Desmodur® N 3300

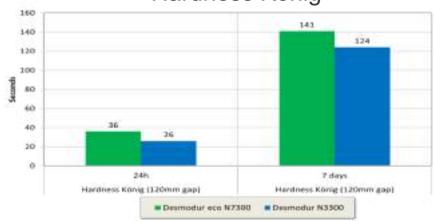

^{*} Confirmed by radiocarbon method ¹⁴C measurement according to ASTM-D6866 standard

Desmodur® eco N 7300

Significantly improved carbon footprint

- Bio-based and significantly improved carbon footprint cradle-to-gate in comparison to standard products (internal assessment done, external certification in process)
- Bio-based process with significant improvement on energy efficiency

^{*} ALIPA industry average value


Carbon footprint based on internal calculation Carbon footprint based on internal calculation CO2 PDI Fermentation to PDA Bio-refinery Biomass

Desmodur eco N 7300 versus Desmodur N 3300

in a 2K clear coat formulation for wood

Hardness König

2K formulation based on Desmophen PL 817 and different hardeners at NCO/OH=1

- Advantages of Desmodur eco N 7300 in the early acetone resistance (24h)
- Comparable performance of Desmodur eco N 7300 and N 3300 regarding:
 - Scratch resistance
 - Chemical resistance
 - Gloss

A Desmodur® eco success story:

with a biobased hardener

First-ever car painted with a clearcoat.

How collaboration between three major players along the value

chain has made it possible to paint the first car with a clearcoat.

containing a biobased hardener under near-serial conditions.

covestro

Sirca presented Desmodur eco N based waterborne coating on bench installation at Museo Diocesano (Milan)

High performance enabled by nature

the state of the s

Authorities and control of logistics are controlly only and in indicate and product factor and CVCs, retrained in their production processes. A project have fore SASP's Coplings Brisco. Via substitution in multiplacture. Authorities for the installation company Commission installation and control one inflations for the first otherwise. Auth CLI substitution are in suscendibility control of the substitution are including or interest function and their maje and a substitution of including a large APAP developed the first control of the installation and the control of the substitution of the installation and the transfer of the foreign control of the installation and the first test on the same foreign control of the substitution of the first substitute of the same foreign control is such as foreign and the same and foreign control is such as an are substituted as a substitution of the foreign control is such as a substitution of the substitute of the same foreign control is such as a substitution of the same control of the first control is such as a substitution of the same control of the first control of the same foreign and first control of the same foreign and foreign and same first.

statemen Audi. We are still step models the early dayout using the learning are represented by any of the seas blackers, inhanded behaviously. Sead-opposed Materials and Processed Replaceding at Justi. We the quality of the participant pointers in our materials possible, The thing spally of the participant pointers for a material processing. The project has gloven-food a potential gradient in secondary. The project has gloven-food a potential gradient in secondary. The project has gloven-food a potential gradient in the secondary of the project has a potential processing size of the secondary of the project has a potentially a position on This man industry for this participant or project and the project of the

benindrar by reducels are of greet inpersonal training

to entering that reader readily produce address flaving to programme or quality and performance," any Co. Selfrings Encourage I year of Conscious or Search and Toolset During at SASP.

These are solution after between the first comparisons as lapar best stop to recommend with authors for painting sections or understanding of "Eventing for you".

Contingua qualitari Contingua qualitari Contingua qualitari Contingua qualitari

MGNethamperiosos ind AE Samery Rod QE

Desmodur eco

.....

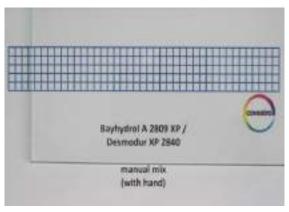
-BASE

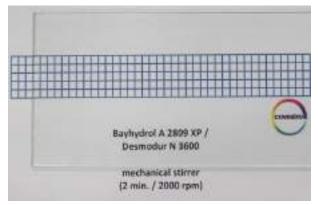
ത്ത

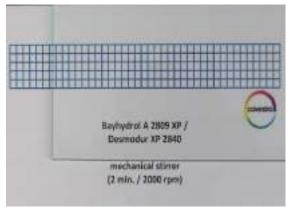
covestro

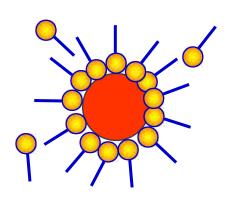
Commissioned All formation of the control Affordation of the control Control and control formation

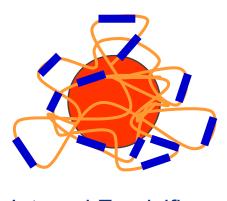
Page 29




Hydrophilized Polyisocyanates


Emulsification of low viscous polyisocyanates in Bayhydrol A 2809



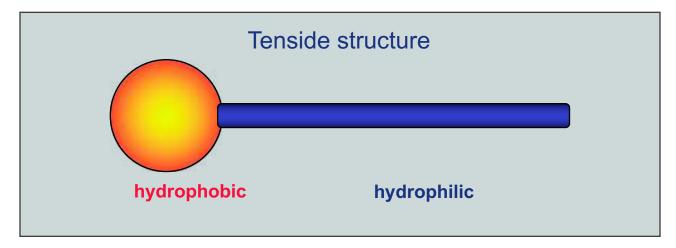

Incorporation of medium viscous polyisocyanates into aqueous dispersions at low shear is critical

Emulsifiers for Polyisocyanates

External Emulsifier

Internal Emulsifier

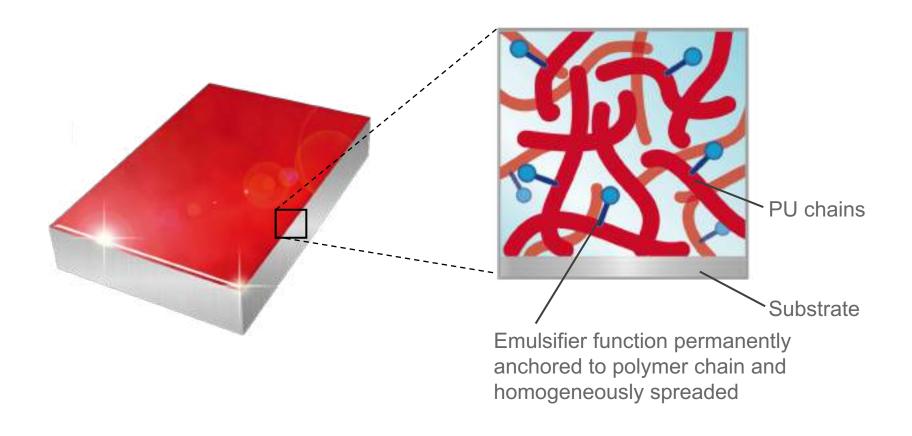
hydrophobic lipophilic


hydrophilic

... have to be:

- non-reactive with Isocyanates (NCO consumption, catalysis)
- free of water
- soluble in isocyanate and coatings film
- reactive with resins
 ⇒ internal emulsifiers / incorporation into
 PUR network

Polyether modified trimer – 1st generation type



- HDI based types / IPDI based types
- Disadvantage: lower functionality- high hydrophilicity

Waterborne PU coating with hydrophilized hardeners

Polyether modified allophanate/trimer – 2nd generation type

- lower hydrophilicity
- higher functionality
- better resistance
- HDI based types / IPDI based types

Page 35

Waterborne PU coating with hydrophilized Covestro hardeners – easy to mix

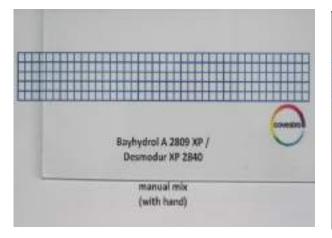
Aqueous phase

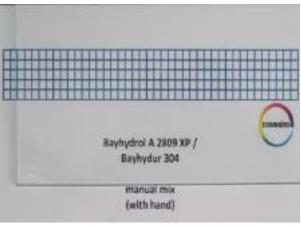
Easy stirring

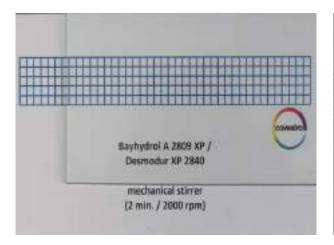
Spontaneous emulsification

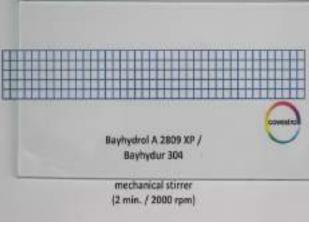
Hydrophilized

HDI-hardener Bayhydur® 305 (organic phase)


Sulfonic acid modified trimer – 3rd generation type




- significantly increased resistance
- HDI based types


Emulsification of different Polyisocyanates in Bayhydrol A 2809

Incorporation of polyisocyanates into aqueous dispersions at low shear is possible through the use of hydrophilic types

Waterborne 2K-PUR-Coatingson the way to even more sustainability

 HDI / IPDI – mixed products: Tailored balance of hardeners and optimal cosolvent enable formulations fulfilling indoor air emission regulations (AgBB)

Use of fatty acid modified Increase of Bio-content of polyether-modified crosslinkers

Building block for low viscous allophanates

PDI – based,
 hydrophilized hardener:
 Bio-content of crosslinker > 60 %

Bayhydur® eco 701-90

Anionically hydrophilized polyisocyanate from biobased PDI for 2K waterborne polyurethane wood coatings with increased renewable content

	Approx. value		
Supply form	90 % in PGDA		
NCO	18%		
Viscosity	5000 mPa⋅s		
Biobased content*	68 %		

^{*} Confirmed by radiocarbon method ¹⁴C measurement according to ASTM-D6866 standard

Product highlights:

- Good compatibility with acrylic and polyurethane dispersions
- Easy to mix
- Excellent chemical resistance
- Ready to use possible
- Not flammable
- Low odor

Bayhydur® eco 701-90

2K waterbased PU clear furniture coating

Clear coating, glossy, based on secondary acrylate polyol (Bayhydrol® A 2651) crosslinking ratio 150%; solid content 40%

Coating based on different hardeners	ent	Bayhydur [®] eco 701-90	Bayhydur [®] XP 2655	
Hardener solution		Diluted to 80% in PGDA	Diluted to 80% in PGDA	
Mixing process		manual	manual	
VOC content in coating		68 g/l	68 g/l	
Bio-based content in coating	on solid	29 %	6 %	
Drying time at RT	T1	40 min	60 min	
120 µm wet on glass	T4	6.5 h	8.25 h	
Hardness [König, s]	1 d, RT	40	40	
120 µm wet on glass	16 h, 50°C	110	110	
Gloss (GU)	20°	84	84	
120 μm wet on black, after 7 days at RT	60°	90	90	
	haze	12	14	
Chemical resistance				
Water	16 h	5	5	
Ethanol 48%	1 h	5	5	
Coffee	16 h	5	5	
Red wine	6 h	5	5	

Bayhydur® eco 701-90 cures faster than the corresponding HDI hydrophilic hardener

A Bayfrydur® eco success story: Furniture protected by a high-performance 2K bio-based waterborne coating

How Covestro helped an italian coating manufacturer to develop a high performance bio-besied waterborner coating for one of Milanois most innovative high-end design furniture brands.

Lunch Break