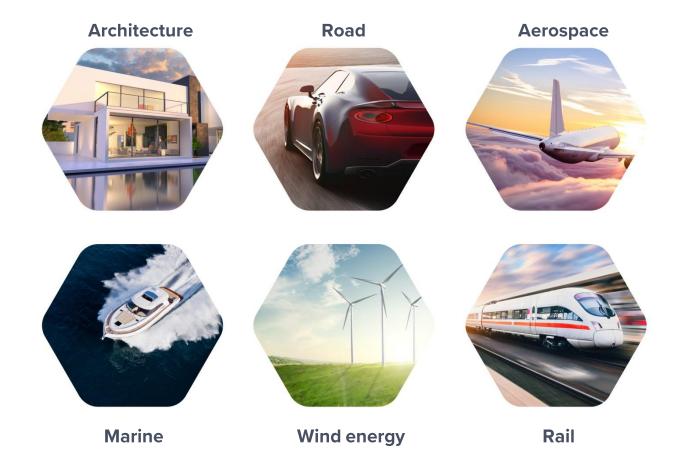
Easy processing and sustainable Core Materials for lightweight structures

ramspec Conference for Composite Materials, Milan, 3-4. October 2018

Content

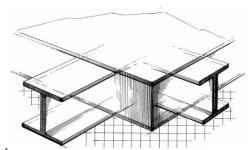
- 3AC core materials at Glance
- Why Core Materials?
 - Sandwich principle
 - Core Material selection criteria
- 3AC sustainable Core Materials
 - BALTEK® End-grain BALSA cores
 - AIREX® PET cores
- Applications for recyclable PET cores
 - Marine
 - B&C
 - Road Transportation
- Summary

3A Composites Core Materials in Numbers



3A Composites Core Materials

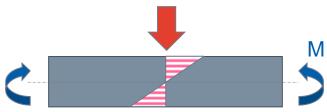
Tailored Core Material solutions for

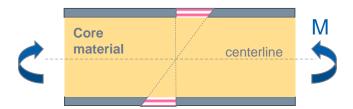

Why Core Materials

Sandwich = Lightweight = Sustainable

What is a Sandwich?

"Efficient distribution of mechanical properties in the structure":


- Bending stresses: maximum at the extremities (close to surface)
 - Stiff and Strong material to be concentrated there (= SKIN)


I-beam analogy

- Web → Core
- Flange → Skins

Distribution of **bending** stresses

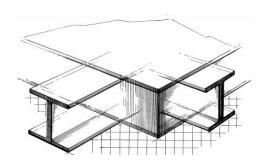
in a **monolitic structure**

in a **sandwich structure**:

Top skin: in compression

Core: in shear

Bottom skin: in tension

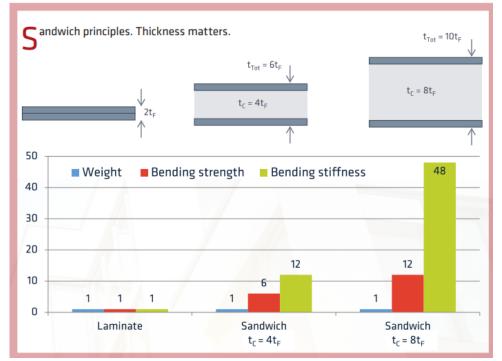


Why Core Materials

Sandwich = Lightweight = Sustainable

What is a Sandwich?

"Efficient distribution of mechanical properties in the structure":

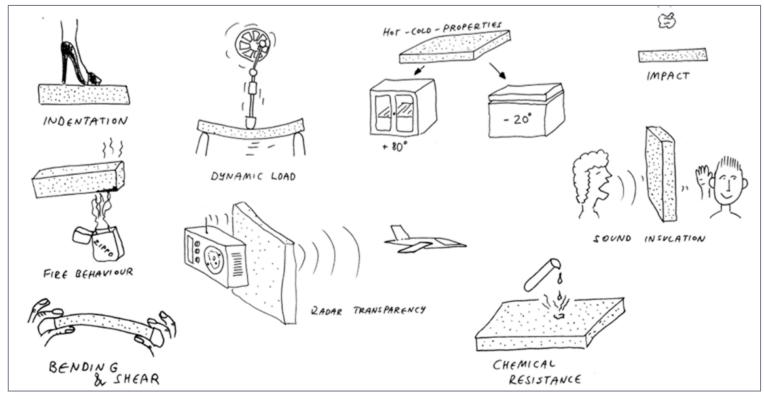


I-beam analogy

- The farther away from centerline the higher the impact on stiffness
 - Separate skins as much as possible (=CORE)

Function of Core:

- Transfer loads between skins
- Keep skins apart (under load)



Why Core Materials

Selection criteria

Many requirements → very depending on application

and...

€/MPa

MPa/density

Cost or manufacturing process

Global availability

Sustainability (production)

3AC Core Materials AIREX®/ BALTEK®

The broadest selection of Core Materials worldwide

We offer the whole range to satisfy every need

PET

AIREX® T92 AIREX® T10 AIREX® T90

Balsa

BALTEK® SB BALTEK® SBC

iversal Cores

AIREX® C70 AIREX® C71 Good FST and fatigue
 Recyclable

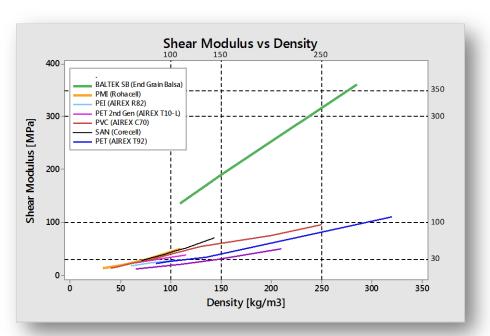
- Easy processing
- High temp. resistance
- Extremely stiff and strong
- Good FST
- · High temp. resistance
- Good mechanical props. vs. density
- Good impact resistance

AIREX® **R82** → outstanding FST and dielectric properties

AIREX[®] **C51** → good formability

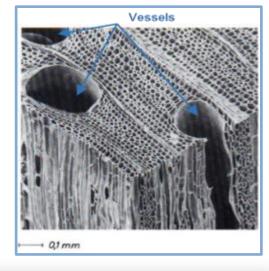
AIREX[®] **PX** → for very high loads & standalone applications

BALTEK[®] **VBC** → for high performance solutions



Plantations in Ecuador and Papua New Guinea

3AC Core Materials

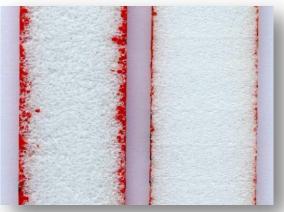

BALTEK® End-grain BALSA – the Green Core

- Highest specific Properties (vs. Density)
- 100% Natural product
- Sustainable production FSC certified
- No Temperature sensitivity in operation
- SealX variant for reduced Resin Consumption in vacuum infusion

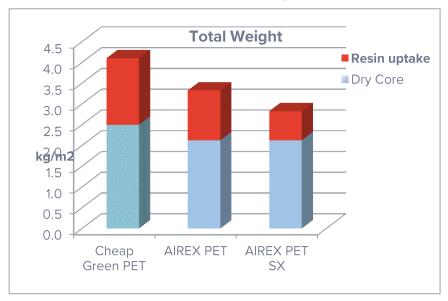
3AC Core Materials

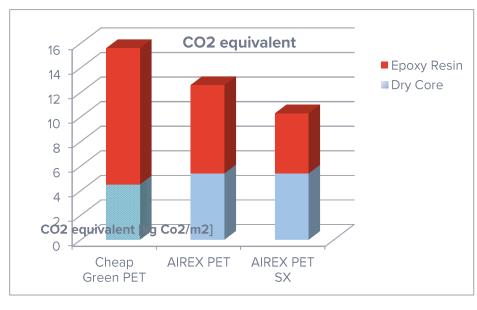
AIREX® PET core materials – 100% recyclable

AIREX® T92, AIREX® T90 (FST-grade)



- 100% Recyclable
- Easy processing temperature insensitive, no outgassing issues, styrene insensitive
- Excellent Fatigue performance
- Non-toxic fumes
- Consistent mechanical properties (low variability)
- Moisture insensitive and Water resistant
- Low Resin consumption (SX)
- Quality control (e.g. full traceability)
- No thickness limitation
- Interesting cost per mechanical property
- Thermoformable


AIREX® T92
SealX



Sustainabiliy factors

Life Cycle Analysis – PET core ≠ PET core

Sandwich components using different PET cores with equivalent mech. performance:

Lighter part

- Lower energy consumption
- Less resin consumption
- Cost efficient lower total cost

Lower CO₂ equivalents - due to

- Lower resin consumption
- Lower core material (polymer) mass
 - Better specific properties
 - → Equivalent core material **cost**

Data source:

- Life cycle data brochure producer green PET
- Life cycle data for Epoxy resin
- Resin uptake from own tests

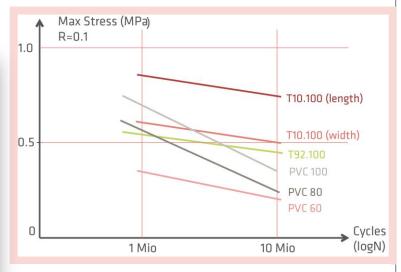
3AC Core Materials

AIREX® PET core materials – 100% recyclable

AIREX® T10 - The new generation PET Foam core

In addition to the usual AIREX® PET advantages:

- No weldlines
- Fully homogenous cell structure
- Good shear elongation
- Higher specific mechanical properties
 vs. standard PET cores (welded)


Applications for AIREX® PET coresMarine

Easy Substitution of PVC cores with AIREX® PET:

- AIREX Cores: AIREX® T10, AIREX® T92
- Apply ISO 12215-2 design rules and DNV-GL properties
- **Easy Processing:** No outgassing/bubble issues, styrene resistant
- Higher **Fatigue** performance

- AIREX® T92.100/T10.100 for most parts
- AIREX® T92.80 for small parts
- AIREX® T92.60 for stringers
- AIREX® T92.320 for transoms

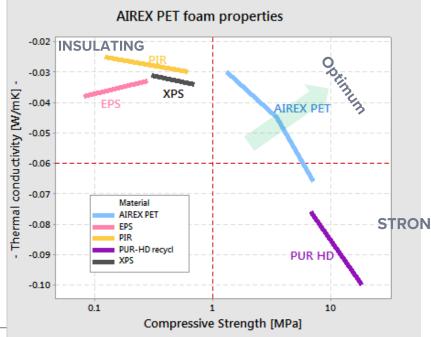
Applications for AIREX® PET cores

Building and Construction

AIREX Cores: AIREX® T10, AIREX® T92, AIREX® T90 (FR)

Substitute Wood parts:

Water resistant structural parts


Substitute XPS and PU:

Self-supporting insulation elements

Retrofitting (e.g. Balconies):

⇒ Stiff and **Light**

Applications for AIREX® PET cores

Truck walls & floors

Substitution PUR 40kg/m³ with AIREX[®] PET 60kg/m³ core - proved:

- Lower Total weight
- Lower Total cost
- Improved structural integrity (impact resistance, Fatigue, ...)
- Moisture insensitive
- Similar thermal insulation in operation
- Same total thickness

PU 40	PET 60

	PU 40	PET 60
Skin thickness / side	2mm	1mm
Total thickness	17mm	17mm
Total weight	6.9 kg/m ²	4.2 kg/m ²
Stiffness	100%	130%

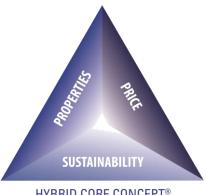
Summary

Structural Core Materials – Selection

HYBRID CORE CONCEPT®

... optimize each sandwich structure to its defined goals

Within the triangle of


- Properties (weight, stiffness, heat resistance, damage tolerance etc.)
- Cost (material, resin uptake, finishing, processing, life cycle etc.)
- Sustainability (CO₂ footprint, recyclability, overall life cycle analysis)

Using one single core material may be simple and good enough

however

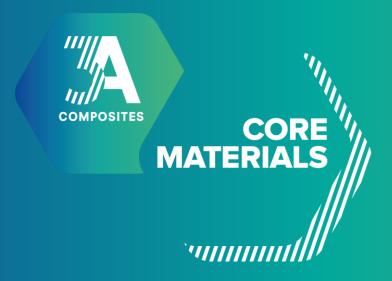
Intelligent combinations of different materials is the

better solution in most cases!

Summary

How to increase efficiency and sustainability AND reduce total Cost?

New Design:


- Performance Stiffness/Strength:
 - SKIN: keep fiber reinforced skins as thin as possible
 - CORE: optimize core Thickness and Properties
- Sustainability:
 - Use recyclable cores
 - Consider resin consumption

Existing sandwich Design/manufacturing process:

- Switch to Eco-friendly core (recyclable) e.g. from PVC to Balsa or PET
- Optimize specific Properties (Density dependent) **BALTEK**® or **AIREX**® **PET**
- Minimize Resin uptake (infusion technologies) SealX PET and SealX Balsa

Thank you for the attention

Contact: Luana.Cavalli@3AComposites.com